

    
      
          
            
  
Welcome to plaidml’s documentation!


Contents:


	Installation Instructions

	Building from source
	Install Anaconda

	Install bazelisk

	Configure the build

	Build the PlaidML Python wheel

	Install the PlaidML Python wheel

	PlaidML with Keras

	Set up a build environment

	Build the PlaidML-Keras wheel

	Install the PlaidML-Keras Python wheel

	Testing PlaidML





	Contributing to PlaidML
	Process





	Troubleshooting
	Common Issues

	Run Backend Tests

	Enable Verbose Logging





	Tile eDSL
	Scope and Warning

	How to Write Tile Code

	Reference





	API
	Core

	EDSL

	Execution





	Configuration









          

      

      

    

  

    
      
          
            
  
Installation Instructions

PlaidML supports Ubuntu, macOS , and Microsoft Windows operating systems.





Ubuntu






If necessary, install Python’s pip tool. OpenCL 1.2 or greater is alsorequired.

sudo add-apt-repository universe && sudo apt update
sudo apt install python3-pip
sudo apt install clinfo





Run clinfo, and if it reports "Number of platforms" == 0, you can install a driver (GPU) or enable a CPU via one of these options:


	Nvidia – For Nvidia GPUs, run:




sudo add-apt-repository ppa:graphics-drivers/ppa && sudo apt update
sudo apt install nvidia-modprobe nvidia-384 nvidia-opencl-icd-384 libcuda1-384






	AMD – For AMD graphics cards, download the AMDGPU PRO driver [http://support.amd.com/en-us/kb-articles/Pages/AMDGPU-PRO-Driver-for-Linux-Release-Notes.aspx] and follow the
instructions provided by AMD for the chip.


	Intel® Xeon® Processors OR Intel® Core™ Processors – In lieu of installing specific drivers,
you can install ngraph with pip [https://github.com/NervanaSystems/ngraph/blob/master/README.md#quick-start], or you can build the nGraph Library [https://ngraph.nervanasys.com/docs/latest/buildlb.html] with the
cmake flag -DNGRAPH*PLAIDML*ENABLE=TRUE.




Python

Although PlaidML can be run with Python2, we recommend Python3, as well as judicious use of a Virtualenv [https://virtualenv.pypa.io/en/stable].  To create one just for using PlaidML:

python3 -m venv plaidml-venv
source plaidml-venv/bin/activate





Keras

There are two ways to get Keras working on your system:


	Isolate it to your venv as follows:




pip install -U plaidml-keras






	Alternatively, install the PlaidML wheels system-wide with:




sudo -H pip install -U plaidml-keras





Finally, set up PlaidML to use a preferred computing device:

plaidml-setup





You can test the installation by running MobileNet in plaidbench [https://github.com/plaidml/plaidml/tree/plaidml-v1/plaidbench]. Remember to use sudo -H if you’re working outside of a virtual environment.

pip install plaidml-keras plaidbench
plaidbench keras mobilenet





You can adapt any Keras code by using the PlaidML backend instead of the TensorFlow, CNTK, or Theano backend that you’d normally use; simply change the Keras backend to plaidml.keras.backend.
You can do this by modifying

~/.keras/keras.json so that the backend line reads "backend":
"plaidml.keras.backend" If this file does not exist, see the [Backend
instructions for Keras]. If you don’t need anything special in your Keras
settings, you can set the ~/.keras/keras.json as follows:

{
    "epsilon": 1e-07,
    "floatx": "float32",
    "image*data*format": "channels_last",
    "backend": "plaidml.keras.backend"
}





Another option is to globally set the KERAS_BACKEND environment variable
to plaidml.keras.backend.
A monkey-patch technique involving plaidml.keras.install_backend() may still
work, but should be considered deprecated in favor of the above methods.








macOS






A computer listed on Apple’s compatibility list [https://support.apple.com/en-us/HT202823] with support for OpenCL 1.2 is
required; those from 2011 and later usually fit this requirement.

Python

Although PlaidML can be run with Python2, we recommend Python3, as well as
judicious use of a Virtualenv [https://virtualenv.pypa.io/en/stable].  To create one just for using PlaidML:

python3 -m venv plaidml-venv
source plaidml-venv/bin/activate





Keras

To install PlaidML with Keras, run the following:

pip install -U plaidml-keras





Finally, set up PlaidML to use a preferred computing device:

plaidml-setup





PlaidML should now be installed! You can test the installation by running
MobileNet in plaidbench [https://github.com/plaidml/plaidml/tree/plaidml-v1/plaidbench].

pip install plaidml-keras plaidbench
plaidbench keras mobilenet












Microsoft Windows






These instructions assume Windows 10 without Python installed; adapt accordingly.


	First install Chocolatey [https://chocolatey.org/] by starting an Administrator PowerShell and running:




Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))





You’ll likely need to reboot your shell at this point.


	Install Python:




choco install -y python git vcredist2015






	Switch to an unprivileged PowerShell to install and set up PlaidML with Keras




pip install -U plaidml-keras
plaidml-setup





PlaidML should now be installed! You can test the installation by running
MobileNet in plaidbench [https://github.com/plaidml/plaidml/tree/plaidml-v1/plaidbench].

pip install plaidml-keras plaidbench
plaidbench keras mobilenet











Intel® SDK for OpenCL™ Applications [https://software.intel.com/en-us/intel-opencl]





          

      

      

    

  

    
      
          
            
  
Building from source


Install Anaconda

Install Anaconda [https://www.anaconda.com/download].  You’ll want to use a Python 3 version.
After installing Anaconda, you’ll need to restart your shell, to pick up its
environment variable modifications (i.e. the path to the conda tool and shell
integrations).
For Microsoft Windows, you’ll also need the Visual C++ compiler (2017+) and the
Windows SDK, following the Bazel-on-Windows [https://docs.bazel.build/versions/master/windows.html] instructions.




Install bazelisk

The Bazelisk [https://github.com/bazelbuild/bazelisk] tool is a wrapper for Bazel [http://bazel.build] which provides the ability to
enfore a particular version of Bazel.
Download the latest version for your platform and place the executable somewhere
in your PATH (e.g. /usr/local/bin). You will also need to mark it as
executable. Example:

wget https://github.com/bazelbuild/bazelisk/releases/download/v0.0.8/bazelisk-darwin-amd64
mv bazelisk-darwin-amd64 /usr/local/bin
chmod +x /usr/local/bin/bazelisk





https://github.com/bazelbuild/bazelisk/releases




Configure the build

Use the configure script to configure your build. Note: the configure script
requires Python 3.
By default, running the configure script will:
* Create and/or update your conda environment
* Configure pre-commit hooks for development purposes
* Configure bazelisk based on your host OS

./configure





On Windows, use:

python configure





Here’s an example session:

$ ./configure
Configuring PlaidML build environment
conda found at: /usr/local/miniconda3/bin/conda
Creating conda environment from: $HOME/src/plaidml/environment.yml
Searching for pre-commit in: $HOME/src/plaidml/.cenv/bin
pre-commit installed at .git/hooks/pre-commit
bazelisk version
Bazelisk version: v0.0.8
Starting local Bazel server and connecting to it...
Build label: 0.28.1
Build target: bazel-out/darwin-opt/bin/src/main/java/com/google/devtools/build/lib/bazel/BazelServer_deploy.jar
Build time: Fri Jul 19 15:22:50 2019 (1563549770)
Build timestamp: 1563549770
Build timestamp as int: 1563549770
Using variant: macos*x86*64
Your build is configured.
Use the following to run all unit tests:
bazelisk test //...








Build the PlaidML Python wheel

bazelisk build //plaidml:wheel








Install the PlaidML Python wheel

pip install -U bazel-bin/plaidml/wheel.pkg/dist/*.whl
plaidml-setup








PlaidML with Keras

The PlaidML-Keras Python Wheel contains the code needed for
integration with Keras.
You can get the latest release of the PlaidML-Keras Python Wheel by
running:

pip install plaidml-keras





You can also build and install the wheel from source.




Set up a build environment

Follow the setup instructions for Build the PlaidML Python wheel, above.




Build the PlaidML-Keras wheel

bazelisk build //plaidml/keras:wheel








Install the PlaidML-Keras Python wheel

pip install -U bazel-bin/plaidml/keras/wheel.pkg/dist/*.whl








Testing PlaidML

Unit tests are executed through bazel:

bazelisk test //...





Unit tests for frontends are marked manual and must be executed individually (requires
running plaidml-setup prior to execution)

bazelisk run //plaidml/keras:backend_test











          

      

      

    

  

    
      
          
            
  
Contributing to PlaidML

We welcome contributions to PlaidML from anyone. This document contains:
* Guidelines for creating successful PRs
* Outlines the contribution process
* Lists general areas for contribution
* Provides resources and context to ease development, where relevant and available
Before starting any work, please ensure you are able to build and test PlaidML.
Guidelines
******
* Create unit tests for new features and bug fixes. Integration tests are required for larger features.



	C++ code conforms to the Google Style Guide for CPP [https://google.github.io/styleguide/cppguide.html].


	Python code conforms to the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html].








Process


	Ensure there is an open issue assigned to you before doing (too much) work:
* If you’re tackling an open issue that isn’t assigned, please assign it to yourself.
* If you’d like to solve an issue that is already assigned, please comment on the issue to ensure you’re not duplicating effort.
* If you’d like to provide a new feature, open a new issue. Please provide a reasonably-detailed description of what you’d like to do, and clearly indicate that
you’re willing to do the work.


	Work on a fork as usual in GitHub. Please ensure the same tests travis runs will pass before creating a PR.


	Review the License [https://raw.githubusercontent.com/plaidml/plaidml/master/LICENSE] file in the plaidml repo and the Guidelines on this page.




4. Once tests have passed, a maintainer will assign the issue to themselves and run the PR through the (currently private) performance test suite. If there are issues,
we will attempt to resolve them, but we may provide details and ask the author to address.
5. Once the performance regression suite has passed, we will accept and merge the PR.
Areas for Contribution
******************
* Ops for Frontends



	PlaidML welcomes implementations for currently unimplemented operations as well as Tile code for novel operations supported by research.


	Please read Adding Tile Ops and How to Write Tile Code tutorials.








	ML Framework Frontends (e.g., Keras, Pytorch, etc)
* PlaidML welcomes integrations with any established ML framework or interop (NNVM, ONNX, etc).
* You can find commonly used operations in the [plaidml.op](api/plaidml.op.rst) module.
* Please read building a frontend tutorial.


	HALs for Backend Targets (OpenCL, Vulkan, SPIR-V, HVX, etc)
* There is no documentation for the HAL currently. The interface is fairly straightforward and the OpenCL HAL <../tile/hal/opencl> provides a good example of a complete HAL.




Please follow the process above before embarking on anything major (like integrating a new frontend or backend).







          

      

      

    

  

    
      
          
            
  
Troubleshooting

Having trouble getting PlaidML to work? Well, you’re in the right place!
Before you open a new issue on GitHub, please
take a look at the Common Issues,
Enable Verbose Logging in PlaidML, and Run Backend Tests. These steps will help enable us to
provide you with better support on your issue.


Common Issues


PlaidML Setup Errors




Memory Errors

OSError: exception: access violation reading 0x0000000000000030





This error might be caused by a memory allocation failure, and it fails
silently. You can fix this error by decreasing your batch size and trying again.

plaidml.exceptions.ResourceExhausted: Out of memory





This error is caused by incorrect Tile syntax.




Bazel Issues

For any Bazel-specific issues you’re encountering, we recommend that you first
visit Bazel’s installation documentation [https://docs.bazel.build/versions/master/install.html] which has a comprehensive overview of Bazel on various
platforms. Any issues commonly encountered by PlaidML users are documented below.

Encountered error while reading extension file 'workspace.bzl': no such package '@toolchain//'





On MacOS devices, toolchain errors often indicate that the user does not have
Xcode properly installed. Even if you have Xcode Command Line Tools installed,
you may not have a proper installation of Xcode itself.
To check your installation of Xcode, first print the path of the active
developer directory:

xcode-select -p





The resulting path should be /Applications/Xcode.app/Contents/Developer. If
that is not the path you are seeing when you run xcode-select -p, please go to
the App Store and download Xcode.
After verifying that Xcode is properly installed, you will need to reset your
Bazel instance before running Bazel again:

bazelisk clean --expunge








PlaidML Exceptions

Applying function, tensor with mismatching dimensionality





This error may be caused by a known issue with the BatchDot operation, where
results are inconsistent across backends. The Keras documentation for BatchDot [https://keras.io/backend/#batch_dot] matches the Theano backend’s
implemented behavior and the default behavior within PlaidML. The TensorFlow
backend implements BatchDot in a different way, and this causes a mismatch in
the expected output shape (there is an open issue against TensorFlow [https://github.com/tensorflow/tensorflow/issues/30846] to get this
fixed).
If you have existing Keras code that was written for the TensorFlow backend,
and it is running into this issue, you can enable experimental support for
TensorFlow-like BatchDot behavior by setting the environment variable
PLAIDML*BATCHDOT*TF_BEHAVIOR to True.

ERROR:plaidml:syntax error, unexpected -, expecting "," or )





This error may be caused by special characters, such as -, that are used in
variable names within your code. Please try removing and/or replacing special
characters in your variable names, and try running again.






Run Backend Tests

Backend Tests provide us with useful information that we can use to help solve
your issue. To run backend tests on PlaidML, follow these steps:


	Verify that you have the PlaidML Python Wheel built as specified in Building from source


	Run the backend tests through Bazel




bazel test --config macos*x86*64 @com*intel*plaidml//plaidml/keras:backend_test








Enable Verbose Logging

You can enable verbose logging through the environment variable PLAIDML_VERBOSE.
PLAIDML_VERBOSE should be set to an integer specifying the level of verbosity
(valid levels are 0-4 inclusive, where 0 is not verbose and 4 is the most verbose).

For instance, the following command would set a verbosity level of 1.

export PLAIDML_VERBOSE=1











          

      

      

    

  

    
      
          
            
  
Tile eDSL

The C++ Tile eDSL (Embedded Domain Specific Language) provides developers with a
way of describing a neural network so that the Stripe-based PlaidML compiler can
construct an efficient implementation.
This tutorial is intended to help machine learning practitioners (or anyone with
a background in software engineering and mathematics) get started using the C++
Tile eDSL.


Scope and Warning

This tutorial provides an introduction to the C++ Tile eDSL. It is intended to
help machine learning practitioners get started writing Tile code as quickly as
possible, and as such covers core features, not every language detail. This is a
tutorial, not a spec, and as such will consist of a series of examples, with a
summary reference section at the end.
This tutorial covers how to use the C++ Tile eDSL, not how Tile code is
constructed and manipulated by PlaidML. It does not cover the workings of
PlaidML utilities such as the pmlc compiler.
Tile and PlaidML are still being developed and the APIs discussed here are subject
to change.




How to Write Tile Code


Sum Over Axis

We’re ready to look at some C++ Tile code! Here’s an operation that takes the
sum over axis 0 of a 2D tensor (in Keras this would be K.sum(I, axis=0)):





C++






Tensor sum_over_axis(const Tensor& I) {
  TensorDim M, N;
  TensorIndex m, n;
  I.bind_dims(M, N);
  auto O = TensorOutput(N);
  O(n) += I(m, n); // contraction
  return O;
}












Python






def sum_over_axis(I):
  M, N = TensorDims(2)
  m, n = TensorIndexes(2)
  I.bind_dims(M, N)
  O = TensorOutput(N)
  # contraction
  O[n] += I[m, n]
  return O











An operation such as this which merges together values across one or more
indices is called a contraction. The syntax may look a bit odd at first, but
it’s related to summation notation. Below we show how this C++ Tile code is
related to the mathematical formula for the operation by using colors to
highlight corresponding pieces:


\[\color{red}O[n]
\color{default}=
\color{green}\sum_{m}
\color{blue}I[m, n]\]


\[\color{red}\verb|O(n)|
\color{green}\verb| += |
\color{blue}\verb|I(m, n)|\color{default}\verb|;|\]

In green, notice that the summation symbol is represented as += in C++ Tile
code. Some portions of the notation do not perfectly correspond. Here’s why:


	Summation notation includes a m subscript to indicate that m is the
variable being summed over. Tile code implicitly sums over all valid indices
(valid means not out of range for any tensor, and not failing any additional
user-specified constraints as discussed in later examples).


	Tile must be explicitly given the shape of any new tensor created, done in
this code by TensorOutput(N). In this case we want N to match the size of
the last dimension of I, which is specified by using I.bind_dims(M, N).
It is possible, however, to make this dimension of O larger or smaller,
which would zero-pad or truncate O respectively.
For example,





C++






auto O = TensorOutput(N + 1);












Python






O = TensorOutput(N+1)











would result in a 0 as the last element of O if we’re still assuming N
is the size of the last dimension of I.



	As is the case for all C++ statements, they must end with a semicolon.







Max Over Axis

Taking the maximum over axis 0 looks very similar to taking the sum over axis
0. Just like a sum is represented in Tile with +=, a max is represented by
>=. Thus, the Tile code for max over axis 0 is just a single character
change from sum over axis 0. Let’s look at it as a Tile function:





C++






Tensor max_over_axis(const Tensor& I) {
  TensorDim M, N;
  TensorIndex m, n;
  I.bind_dims(M, N);
  auto O = TensorOutput(N);
  O(n) >= I(m, n);
  return O;
}












Python






def max_over_axis(I):
  M, N = TensorDims(2)
  m, n = TensorIndexes(2)
  I.bind_dims(M, N)
  O = TensorOutput(N)
  O[n] >= I[m, n]
  return O











Again, this corresponds closely to mathematical notation:


\[\color{red}O[n]
\color{default}=
\color{green}\max_m
\color{blue}I[m, n]\]


\[\color{red}\verb|O(n)|
\color{green}\verb| >= |
\color{blue}\verb|I(m, n)|\color{default}\verb|;|\]




Matrix Multiply

Next we’ll consider matrix multiplication. Let’s look at the mathematical
expression for the matrix multiplication C = AB written out in element-level
detail:


\[C[i, j] = \sum_{k} (A[i, k] \cdot B[k, j])\]

We can convert this to C++ Tile code using the same correspondence as the
previous example: The summation sign becomes plus-assignment, the summation
index is omitted, dimensions are given for the output tensor, and the statement
ends in a semicolon. Here’s the result:





C++






C(i, j) += A(i, k) * B(k, j);












Python






C[i, j] += A[i, k] * B[k, j];











To have correct dimensions, we need I to be the first dimension of A and J
the last dimension of B. Here’s how this looks as part of a full Tile
function:





C++






Tensor matmul(const Tensor& A, const Tensor& B) {
  TensorDim I, J, K;
  TensorIndex i, j, k;
  A.bind_dims(I, K);
  B.bind_dims(K, J);
  auto C = TensorOutput(I, J);
  C(i, j) += A(i, k) * B(k, j);
  return C;
}












Python






def matmul(A, B):
  I, J, K = TensorDims(3)
  i, j, k = TensorIndexes(3)
  A.bind_dims(I, K)
  B.bind_dims(K, J)
  C = TensorOutput(I, J)
  C[i, j] += A[i, k] * B[k, j]
  return C











Notice that we use bind_dims on inputs and we use TensorOutput on
outputs. Input dimensions can be repeated, which results in an error if the Tile
function is passed inputs whose corresponding dimensions don’t all have the
specified size (for example A.bind_dims(K, K) would be constrained to a
square).




Global Min

There is a min contraction <= analogous to the max contraction >=. For the
purposes of this example, however, let’s use the formula min(X) = -max(-X), to
compute the min. We do this by combining a max computation with elementwise
operations that perform the same operation (in this case negation) on every
element of a tensor. Elementwise operations generally cannot be performed on the
same line as contractions, so we write the global min function (for a 3D tensor)
as follows:





C++






Tensor global_min(const Tensor& I) {
  TensorIndex i, j, k;
  auto Neg = -I;
  auto O_Neg = TensorOutput();
  O_Neg() >= Neg(i, j, k);
  auto O = -O_Neg;
  return O;
}












Python






def global_min(I):
  i, j, k = TensorIndexes(3)
  Neg = -I
  O_Neg = TensorOutput()
  O_Neg[()] >= Neg[i, j, k]
  O = -O_Neg
  return O











There are several novel pieces in this example. First, note that the elementwise
operations do not include dimensions. Dimensions are inferred from the inputs in
elementwise operations, and so are never specified in elementwise ops. Neg has
the same shape as I, and O has the same shape as O_Neg. When an
elementwise binary operation is performed, the output shape is determined using
broadcasting semantics [https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html].
Which brings us to the next novelty: we have our first example of a 0D tensor,
O_Neg. Tensors in Tile are allowed to have zero dimensions. In such a case the
tensor represents a scalar, i.e., a single value. In places where dimensions are
specified, you can indicate a 0-dimensional tensor by using () for the
dimensions, as in this example.
Notice that we are taking the max over all axes in a single operation.
Contractions implicitly aggregate over all indices that write to the same
output location (in this case we aggregate over all values of i, j, and
k).




Average

To compute the mean of a tensor, we need to sum the elements and divide by the
total number of elements summed. We can do this by taking advantage of the fact
that we can divide by a constant (including an input TensorDim) as an
elementwise operation. Thus, to take the mean over axis 0 of a 2D tensor, we
write:





C++






Tensor avg(const Tensor& I) {
  TensorDim X, Y;
  TensorIndex x, y;
  I.bind_dims(X, Y);
  auto Sum = TensorOutput();
  Sum(y) += I(x, y);
  return Sum / X;
}












Python






def avg(I):
  X, Y = TensorDims(2)
  x, y = TensorIndexes(2)
  I.bind_dims(X, Y)
  Sum = TensorOutput()
  Sum[y] += I[x, y]
  return Sum / X











We can perform multiple elementwise operations on the same line, including
operations on constants and input dimensions. So, while it would be possible to
take a global mean of a 2D tensor in stages as so:





C++






Tensor avg(const Tensor& I) {
  TensorDim X, Y;
  TensorIndex x, y;
  I.bind_dims(X, Y);
  auto Sum = TensorOutput();
  Sum() += I(x, y);
  PartialMean = Sum / X;
  return PartialMean / Y;
}












Python






def avg_stages(I):
  X, Y = TensorDims(2)
  x, y = TensorIndexes(2)
  I.bind_dims(X, Y)
  Sum = TensorOutput()
  Sum[()] += I[x, y]
  PartialMean = Sum / X
  return PartialMean / Y











it is more straightforward to merge the elementwise operations:





C++






Tensor avg(const Tensor& I) {
  TensorDim X, Y;
  TensorIndex x, y;
  I.bind_dims(X, Y);
  auto Sum = TensorOutput();
  Sum() += I(x, y);
  return Sum / (X * Y);
}












Python






def avg_merge(I):
  X, Y = TensorDims(2)
  x, y = TensorIndexes(2)
  I.bind_dims(X, Y)
  Sum = TensorOutput()
  Sum[()] += I[x, y]
  return Sum / (X * Y)














Max Pool 1D

Next let’s implement a size 2 stride 2 maxpool in Tile. This is the operation
that splits a tensor into groups of 2 and takes the larger element from each
group, yielding a tensor of half the original size. This is straightforward to
implement in straight C++:





C++






float I[N], O[N / 2];
for (int i = 0; i < N/2; ++i) {
  float curr_max = FLT_MIN;
  for (int j = 0; j < 2; ++j) {
    if (I[2 * i + j] > curr_max) {
      curr_max = I[2 * i + j];
    }
  }
  O[i] = curr_max;
}












Python






for i in range (1 , N//2):
  curr_max = numpy.finfo(float).eps
  for j in range (1 , 2):
    if I[2*i*j] > curr_max:
      curr_max = I[2*i+j]
  O[i] = curr_max











for loops over tensor indices get translated into contractions when written in
Tile. The most direct (and, sadly, wrong) implementation in Tile is:





C++






Tensor wrong_max_pool_1d(const Tensor& I) {
  TensorDim N;
  TensorIndex i, j;
  I.bind_dims(N);
  auto O = TensorOutput(N / 2);
  O(i) >= I(2 * i + j);
  return O;
}












Python






def wrong_max_pool_1d(I):
   N = TensorDim()
   i, j = TensorIndexes(2)
   I.bind_dims(N)
   O = TensorOutput(N // 2)
   O[i] >= I[2 * i + j]
   return O











If you were to run this code, every entry of O would equal the global max of
I. We correctly determined that this was a maximization operation, and the
indices for O and I match those used in the straight C++ code, so what went wrong?
The problem with this Tile code is that there are too many “valid” indices. For
example, the case i = 1 , j = 3 means that O[1] checks I[5] as one of the
potential maximum values, even though O[1] is intended to be max(I[2], I[3]).
When we wrote the code with for loops, the inner loop restricted j to 0 or
1; in the Tile code, the compiler figured out the allowed values of j by
looking at the shapes of the tensors, and the only restriction that imposes on
j is that j must be an integer satisfying 0 <= 2 * i + j < N.
When can use add_constraint in Tile to handle such situations:

Something important to note here is that while we wrote j < 2, this constraint
actually means 0<= j < 2. Constraints are always bounded below by 0.
(Without a constraint, however, index variables may still be negative: the
original code included e.g. i = 1, j = -1 as valid index pair.)
We determined the Tile code for this example by starting from imperative code,
but this Tile code is still very similar to mathematical notation, and we could
have started there instead:


\[\color{red}O[i]
\color{default}=
\color{green}\max_{\color{magenta}0 \leq j 
  
    
    API
    

    

    

    
 
  

    
      
          
            
  
API


Contents:


	Core
	Initialization

	Objects





	EDSL
	Initialization

	Objects

	Primitives

	Examples





	Execution
	Initialization

	Objects













          

      

      

    

  

  
    
    Core
    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
Core

PlaidML Core


Contents


	Core


	Initialization


	Objects











Initialization





C++







	
void plaidml::init()


	Initializes PlaidML’s Core API. 












Python







Note

Initialization of PlaidML’s Core Python API happens automatically
wherever the module plaidml.core is imported.












Objects





C++







	
enum core_objects::DType


	Enumerates all of the data types in PlaidML. 

Values:


	
INVALID = PLAIDML_DATA_INVALID


	




	
BOOLEAN = PLAIDML_DATA_BOOLEAN


	




	
INT8 = PLAIDML_DATA_INT8


	




	
UINT8 = PLAIDML_DATA_UINT8


	




	
INT16 = PLAIDML_DATA_INT16


	




	
UINT16 = PLAIDML_DATA_UINT16


	




	
INT32 = PLAIDML_DATA_INT32


	




	
UINT32 = PLAIDML_DATA_UINT32


	




	
INT64 = PLAIDML_DATA_INT64


	




	
UINT64 = PLAIDML_DATA_UINT64


	




	
BFLOAT16 = PLAIDML_DATA_BFLOAT16


	




	
FLOAT16 = PLAIDML_DATA_FLOAT16


	




	
FLOAT32 = PLAIDML_DATA_FLOAT32


	




	
FLOAT64 = PLAIDML_DATA_FLOAT64


	








	
class TensorShape


	This is a TensorShape. 


Public Functions


	
TensorShape()


	TensorShape constructor 






	
TensorShape(DType dtype, const std::vector<int64_t> &sizes)


	TensorShape constructor 
	Parameters
	
	dtype: DType 















	
TensorShape(DType dtype, const std::vector<int64_t> &sizes, const std::vector<int64_t> &strides)


	TensorShape constructor 
	Parameters
	
	dtype: DType 


	sizes: const vector<int64_t> 


	strides: const vector<int64_t> 















	
TensorShape(const std::shared_ptr<plaidml_shape> &ptr)


	TensorShape constructor 
	Parameters
	
	ptr: const shared_ptr<plaidml_shape> 















	
DType dtype() const


	dtype 
	Return
	DType 












	
size_t ndims() const


	Returns the number of dimensions in the TensorShape 
	Return
	size_t 












	
uint64_t nbytes() const


	nbytes 
	Return
	uint64_t 


















	
class View


	This is a View. 


Public Functions


	
char *data()


	data 






	
size_t size()


	size 






	
void writeback()


	writeback 












	
class Buffer


	This is a Buffer. 


Public Functions


	
Buffer()


	Buffer constructor 






	
Buffer(const std::string &device, const TensorShape &shape)


	Buffer constructor 
	Parameters
	
	device: string 


	shape: TensorShape 















	
Buffer(plaidml_buffer *ptr, const TensorShape &shape)


	Buffer constructor 
	Parameters
	
	ptr: plaidml_buffer* 


	shape: TensorShape 















	
plaidml_buffer *as_ptr() const


	Returns a pointer to the Buffer. 
	Return
	plaidml_buffer* 












	
View mmap_current()


	mmap_current 
	Return
	View 












	
View mmap_discard()


	mmap_discard 
	Return
	View 


















	
struct Settings


	These are the Settings. 


Public Static Functions


	
static std::string get(const std::string &key)


	Gets the setting specified by key 
	Return
	string 



	Parameters
	
	key: string 















	
static void set(const std::string &key, const std::string &value)


	Sets the setting specified by key to the value specified. 
	Parameters
	
	key: string 


	value: string 



























Python


















          

      

      

    

  

  
    
    EDSL
    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
EDSL

Embedded Domain Specific Language


Contents


	EDSL


	Initialization


	Objects


	Primitives


	Examples











Initialization





C++







	
void plaidml::edsl::init()


	Initializes PlaidML’s EDSL API. 












Python







Note

Initialization of PlaidML’s EDSL Python API happens automatically
wherever the module plaidml.edsl is imported.












Objects





C++







	
class Program


	This is a program. 


Public Functions


	
Program(const std::string &name, const std::vector<Tensor> &outputs, const std::vector<std::tuple<Tensor, Tensor>> &updates = {})


	Program constructor 






	
std::string str() const


	Return the Program as a string. 






	
const std::vector<ProgramArgument> &args() const


	args 






	
const std::vector<ProgramArgument> &inputs() const


	inputs 






	
const std::vector<ProgramArgument> &outputs() const


	outputs 












	
class TensorDim


	A symbolic object used to specify the dimensions of a Tensor 


Public Functions


	
TensorDim()


	TensorDim constructor 






	
TensorDim(const std::shared_ptr<plaidml_dim_expr> &ptr)


	TensorDim constructor 






	
TensorDim(int64_t value)


	TensorDim constructor 






	
TensorDim operator-() const


	Represents a subtraction operator overload. 






	
std::string str() const


	Returns the TensorDim as a string. 






	
int64_t as_int() const


	Returns the TensorDim as an int. 












	
class TensorIndex


	A symbolic object used to directly index a Tensor or to compute a Tensor’s index as part of a formula. 


Public Functions


	
TensorIndex()


	TensorIndex constructor 






	
TensorIndex(int64_t value)


	TensorIndex constructor 






	
TensorIndex(const std::string &name)


	TensorIndex constructor 






	
TensorIndex operator-() const


	Represents an subtraction operator overload on a TensorIndex 






	
Constraint operator<(int64_t rhs) const


	TODO 






	
Constraint operator<(const TensorDim &rhs) const


	TODO 






	
std::string str() const


	Returns the TensorIndex as a string. 












	
struct Constraint


	This is a constraint. 


Public Members


	
TensorIndex lhs


	lhs 






	
TensorDim rhs


	rhs 












	
class IndexedTensor


	This is an IndexedTensor 


Public Functions


	
IndexedTensor &operator+=(const IndexedTensor &rhs)


	Represents an aggregation_op of SUM in a contraction 






	
IndexedTensor &operator*=(const IndexedTensor &rhs)


	Represents an aggregation_op of PROD in a contraction 






	
IndexedTensor &operator>=(const IndexedTensor &rhs)


	Represents an aggregation_op of MAX in a contraction 






	
IndexedTensor &operator<=(const IndexedTensor &rhs)


	Represents an aggregation_op of MIN in a contraction 






	
IndexedTensor &operator=(const IndexedTensor &rhs)


	Represents an aggregation_op of ASSIGN in a contraction 






	
IndexedTensor operator+(const IndexedTensor &rhs) const


	Represents a combo_op of PLUS in a contraction 






	
IndexedTensor operator*(const IndexedTensor &rhs) const


	Represents a combo_op of MULTIPLY in a contraction 






	
IndexedTensor operator==(const IndexedTensor &rhs) const


	Represents a combo_op of EQ in a contraction 












	
class LogicalShape


	This is a LogicalShape. 


Public Functions


	
LogicalShape(DType dtype, const std::vector<int64_t> &dims)


	LogicalShape constructor 






	
std::string str() const


	Returns a LogicalShape as a string 






	
DType dtype() const


	Returns the datatype of the LogicalShape 






	
size_t ndims() const


	Returns the number of dimensions of the LogicalShape 






	
std::vector<int64_t> int_dims() const


	Returns the dimensions of the LogicalShape as a vector of integers. 






	
bool operator==(const LogicalShape &rhs) const


	TODO 












	
class Tensor


	A multidimensional array of a fixed shape. 


Public Functions


	
Tensor()


	Tensor constructor 






	
Tensor(int value)


	Tensor constructor 
	Return
	Tensor 



	Parameters
	
	value: int 















	
Tensor(unsigned value)


	Tensor constructor 
	Return
	Tensor 



	Parameters
	
	value: unsigned int 















	
Tensor(int64_t value)


	Tensor constructor 
	Return
	Tensor 



	Parameters
	
	value: int64_t 















	
Tensor(double value)


	Tensor constructor 
	Return
	Tensor 



	Parameters
	
	value: double 















	
Tensor(const TensorDim &dim)


	Tensor constructor 






	
Tensor(const std::vector<int64_t> &dims)


	Tensor constructor 






	
Tensor(const std::vector<TensorDim> &dims)


	Tensor constructor 






	
Tensor(const std::initializer_list<TensorDim> &dims)


	Tensor constructor 






	
Tensor(const std::string &name, const std::vector<TensorDim> &dims)


	Tensor constructor 






	
Tensor(const std::string &name, const std::initializer_list<TensorDim> &dims)


	Tensor constructor 






	
Tensor(const Tensor &rhs)


	Tensor constructor 






	
Tensor &operator=(const Tensor &rhs)


	Represents an operator overload for = for a Tensor 






	
Tensor operator-() const


	Represents an eltwise negation 






	
Tensor operator~() const


	Represents an eltwise bit_not 






	
std::string str() const


	TODO 






	
Tensor &no_reduce()


	Enable no_reduce on a contraction 






	
Tensor &use_default(const Tensor &rhs)


	Set use_default on a contraction 






	
Tensor &add_constraint(const Constraint &constraint)


	TODO 






	
Tensor &add_constraints(const std::vector<Constraint> &constraints)


	TODO 






	
LogicalShape shape() const


	Return the tensor’s shape 






	
void bind_dims(const std::vector<TensorDim> &dims) const


	Verify that the specified dims match the dims of this tensor. 






	
template<typename ...Ts>
void bind_dims(Ts... dims) const


	TODO 












	
struct TensorRef


	A reference to a Tensor 


Public Functions


	
TensorRef(const Tensor &tensor)


	TensorRef constructor 






	
operator Tensor() const


	TODO 






	
bool operator<(const TensorRef &rhs) const


	TODO 






	
bool operator==(const TensorRef &rhs) const


	TODO 








Public Members


	
Tensor tensor


	The Tensor that the TensorRef is referencing 












	
struct ProgramArgument


	Description for ProgramArgument 


Public Members


	
bool is_input


	TODO 






	
TensorRef tensor


	TODO 






	
LogicalShape shape


	TODO 






	
std::shared_ptr<Buffer> buffer


	TODO 


















Python















Primitives





C++







	
Tensor plaidml::edsl::abs(const Tensor &x)


	Computes the elementwise absolute value of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::cast(const Tensor &x, DType dtype)


	Casts the element type of a tensor x to the type specified by dtype. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 


	dtype: DType 















	
Tensor plaidml::edsl::ceil(const Tensor &x)


	Computes the elementwise ceiling of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::cos(const Tensor &x)


	Computes the elementwise cosine of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::cosh(const Tensor &x)


	Computes the elementwise hyperbolic cosine of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::exp(const Tensor &x)


	Computes the elementwise natural exponential function of x: ex. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::floor(const Tensor &x)


	Computes the elementwise floor of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::gather(const Tensor &x, const Tensor &y)


	Takes an input tensor (x) and a set of indices to gather over (y), and returns an output tensor that gathers the input tensor from the indices specified. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 


	y: Tensor 















	
Tensor plaidml::edsl::ident(const Tensor &x)


	Returns the identity of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::index(const Tensor &x, size_t axis)


	Returns the index of x at the specified axis. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 


	axis: size_t 















	
Tensor plaidml::edsl::log(const Tensor &x)


	Computes the elementwise natural logarithm of x: ln(x). 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::pow(const Tensor &x, const Tensor &y)


	Computes the elementwise yth power of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 


	y: Tensor 















	
Tensor plaidml::edsl::prng(const Tensor &state, const std::vector<int64_t> &dims)


	Generates a Tensor of elementwise pseudorandom numbers using the seed values specified in state. 
	Return
	Tensor 



	Parameters
	
	state: Tensor 


	dims: vector<int64_t> 















	
Tensor plaidml::edsl::reshape(const Tensor &x, const std::vector<int64_t> &dims)


	Takes an input tensor x and reshapes it according to dims. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 


	dims: vector<int64_t> 















	
Tensor plaidml::edsl::reshape(const Tensor &x, const std::vector<TensorDim> &dims)


	Takes an input tensor x and reshapes it according to dims. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 


	dims: vector<TensorDim> 















	
Tensor plaidml::edsl::round(const Tensor &x)


	Rounds x elementwise. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::scatter(const Tensor &x, const Tensor &y, const Tensor &z)


	Takes an input tensor (x), a set of indices to scatter over (y), and the number of elements in the scattered tensor (z), and returns an output tensor that scatters the input tensor across the number of elements specified. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 


	y: Tensor 


	z: Tensor 















	
Tensor plaidml::edsl::select(const Tensor &cond, const Tensor &true_case, const Tensor &false_case)


	Performs an elementwise conditional which returns the corresponding element in true_case if the condition is evaluated to be true or the corresponding element in false_case if the condition is evaluated to be false. 
	Return
	Tensor 



	Parameters
	
	cond: Tensor 


	true_case: Tensor 


	false_case: Tensor 















	
Tensor plaidml::edsl::shape(const Tensor &x)


	Returns the shape of x as a Tensor. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::sin(const Tensor &x)


	Computes the elementwise sine of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::sinh(const Tensor &x)


	Computes the elementwise hyperbolic sine of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::sqrt(const Tensor &x)


	Computes the elementwise square root of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::tan(const Tensor &x)


	Computes the elementwise tangent of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::tanh(const Tensor &x)


	Computes the elementwise hyperbolic tangent of x. 
	Return
	Tensor 



	Parameters
	
	x: Tensor 















	
Tensor plaidml::edsl::zero()


	Returns a Tensor with a value of 0. 
	Return
	Tensor 


















Python















Examples

Tensor sum_over_axis(const Tensor& I) {
   TensorDim M, N;
   TensorIndex m, n;
   I.bind_dims(M, N);
   auto O = TensorOutput(N);
   O(n) += I(m, n); // contraction
   return O;
}






\[\color{red}O[n]
\color{default}=
\color{green}\sum_{m}
\color{blue}I[m, n]

\]


\[\color{red}\verb|O(n)|
\color{green}\verb| += |
\color{blue}\verb|I(m, n)|\color{default}\verb|;|

\]







          

      

      

    

  

  
    
    Execution
    

    

    

    

    

    

    

    
 
  

    
      
          
            
  
Execution

PlaidML Execution


Contents


	Execution


	Initialization


	Objects











Initialization





C++







	
void plaidml::exec::init()


	Initializes PlaidML’s Execution API. 












Python







Note

Initialization of PlaidML’s Execution Python API happens
automatically wherever the module plaidml.exec is imported.












Objects





C++







	
struct Binding


	Bindings bind a Tensor to a Buffer. 


Public Members


	
edsl::Tensor tensor


	The tensor to bind. 






	
Buffer buffer


	The buffer to be bound to. 












	
class Executable


	This is an Executable. 


Public Functions


	
Executable(const edsl::Program &program, const std::vector<Binding> &inputs, const std::vector<Binding> &outputs)


	Executable constructor 






	
Executable(const edsl::Program &program, const std::string &device, const std::string &target, const std::vector<Binding> &inputs, const std::vector<Binding> &outputs)


	Executable constructor 






	
void run()


	run 












	
struct Binder


	This is a Binder. 


Public Functions


	
Binder(const edsl::Program &program)


	Constructs a Binder. By default, this constructor uses the environment variables PLAIDML_DEVICE and PLAIDML_TARGET to specify your device and target. You can override these using the set_device and set_target functions 






	
Binder &set_device(const std::string &value)


	Set the device for the Binder to use. 
	Return
	Binder 



	Parameters
	
	value: string 















	
Binder &set_target(const std::string &value)


	Set the target for the Binder to use. 
	Return
	Binder 



	Parameters
	
	value: string 















	
Buffer input(const edsl::Tensor &tensor)


	input 
	Return
	Buffer 



	Parameters
	
	tensor: Tensor 















	
Buffer output(const edsl::Tensor &tensor)


	output 
	Return
	Buffer 



	Parameters
	
	tensor: Tensor 















	
Binder &set_input(const edsl::Tensor &tensor, const Buffer &buffer)


	set_input 
	Return
	Binder 



	Parameters
	
	tensor: Tensor 


	buffer: Buffer 















	
Binder &set_output(const edsl::Tensor &tensor, const Buffer &buffer)


	set_output 
	Return
	Binder 



	Parameters
	
	tensor: Tensor 


	buffer: Buffer 















	
std::shared_ptr<Executable> compile()


	compile 
	Return
	shared_ptr<Executable> 
























Python


















          

      

      

    

  

  
    
    Configuration
    

    

    

    
 
  

    
      
          
            
  
Configuration

If you want to use PlaidML from the command line, you can set the
following environment variables to select the proper configurations for your
device. This is equivalent to running plaidml-setup and selecting these
settings when prompted.



	PLAIDML_EXPERIMENTAL - (0 or 1) determines whether to enable experimental mode in PlaidML


	PLAIDML*DEVICE*IDS - (string) the name of the device to use with PlaidML (to see a list of devices, run plaidml\-setup)







Below is an example of how to set the device configuration environment variables
for PlaidML.
.. code-block:

export PLAIDML_EXPERIMENTAL=1
export PLAIDML*DEVICE*IDS=opencl*intel*uhd*graphics*630.0









          

      

      

    

  

  
    
    Index
    

    

    

    

    

    

    

    
 
  

    
      
          
            

Index



 C
 | P
 


C


  	
      	core_objects::BFLOAT16 (C++ enumerator)


      	core_objects::BOOLEAN (C++ enumerator)


      	core_objects::DType (C++ enum)


      	core_objects::FLOAT16 (C++ enumerator)


      	core_objects::FLOAT32 (C++ enumerator)


      	core_objects::FLOAT64 (C++ enumerator)


      	core_objects::INT16 (C++ enumerator)


  

  	
      	core_objects::INT32 (C++ enumerator)


      	core_objects::INT64 (C++ enumerator)


      	core_objects::INT8 (C++ enumerator)


      	core_objects::INVALID (C++ enumerator)


      	core_objects::UINT16 (C++ enumerator)


      	core_objects::UINT32 (C++ enumerator)


      	core_objects::UINT64 (C++ enumerator)


      	core_objects::UINT8 (C++ enumerator)


  





P


  	
      	plaidml::Buffer (C++ class)


      	plaidml::Buffer::as_ptr (C++ function)


      	plaidml::Buffer::Buffer (C++ function), [1], [2]


      	plaidml::Buffer::mmap_current (C++ function)


      	plaidml::Buffer::mmap_discard (C++ function)


      	plaidml::edsl::abs (C++ function)


      	plaidml::edsl::cast (C++ function)


      	plaidml::edsl::ceil (C++ function)


      	plaidml::edsl::Constraint (C++ class)


      	plaidml::edsl::Constraint::lhs (C++ member)


      	plaidml::edsl::Constraint::rhs (C++ member)


      	plaidml::edsl::cos (C++ function)


      	plaidml::edsl::cosh (C++ function)


      	plaidml::edsl::exp (C++ function)


      	plaidml::edsl::floor (C++ function)


      	plaidml::edsl::gather (C++ function)


      	plaidml::edsl::ident (C++ function)


      	plaidml::edsl::index (C++ function)


      	plaidml::edsl::IndexedTensor (C++ class)


      	plaidml::edsl::IndexedTensor::operator* (C++ function)


      	plaidml::edsl::IndexedTensor::operator*= (C++ function)


      	plaidml::edsl::IndexedTensor::operator+ (C++ function)


      	plaidml::edsl::IndexedTensor::operator+= (C++ function)


      	plaidml::edsl::IndexedTensor::operator<= (C++ function)


      	plaidml::edsl::IndexedTensor::operator= (C++ function)


      	plaidml::edsl::IndexedTensor::operator== (C++ function)


      	plaidml::edsl::IndexedTensor::operator>= (C++ function)


      	plaidml::edsl::init (C++ function)


      	plaidml::edsl::log (C++ function)


      	plaidml::edsl::LogicalShape (C++ class)


      	plaidml::edsl::LogicalShape::dtype (C++ function)


      	plaidml::edsl::LogicalShape::int_dims (C++ function)


      	plaidml::edsl::LogicalShape::LogicalShape (C++ function)


      	plaidml::edsl::LogicalShape::ndims (C++ function)


      	plaidml::edsl::LogicalShape::operator== (C++ function)


      	plaidml::edsl::LogicalShape::str (C++ function)


      	plaidml::edsl::pow (C++ function)


      	plaidml::edsl::prng (C++ function)


      	plaidml::edsl::Program (C++ class)


      	plaidml::edsl::Program::args (C++ function)


      	plaidml::edsl::Program::inputs (C++ function)


      	plaidml::edsl::Program::outputs (C++ function)


      	plaidml::edsl::Program::Program (C++ function)


      	plaidml::edsl::Program::str (C++ function)


      	plaidml::edsl::ProgramArgument (C++ class)


      	plaidml::edsl::ProgramArgument::buffer (C++ member)


      	plaidml::edsl::ProgramArgument::is_input (C++ member)


      	plaidml::edsl::ProgramArgument::shape (C++ member)


      	plaidml::edsl::ProgramArgument::tensor (C++ member)


      	plaidml::edsl::reshape (C++ function), [1]


      	plaidml::edsl::round (C++ function)


      	plaidml::edsl::scatter (C++ function)


      	plaidml::edsl::select (C++ function)


      	plaidml::edsl::shape (C++ function)


      	plaidml::edsl::sin (C++ function)


      	plaidml::edsl::sinh (C++ function)


      	plaidml::edsl::sqrt (C++ function)


      	plaidml::edsl::tan (C++ function)


  

  	
      	plaidml::edsl::tanh (C++ function)


      	plaidml::edsl::Tensor (C++ class)


      	plaidml::edsl::Tensor::add_constraint (C++ function)


      	plaidml::edsl::Tensor::add_constraints (C++ function)


      	plaidml::edsl::Tensor::bind_dims (C++ function), [1]


      	plaidml::edsl::Tensor::no_reduce (C++ function)


      	plaidml::edsl::Tensor::operator- (C++ function)


      	plaidml::edsl::Tensor::operator= (C++ function)


      	plaidml::edsl::Tensor::operator~ (C++ function)


      	plaidml::edsl::Tensor::shape (C++ function)


      	plaidml::edsl::Tensor::str (C++ function)


      	plaidml::edsl::Tensor::Tensor (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]


      	plaidml::edsl::Tensor::use_default (C++ function)


      	plaidml::edsl::TensorDim (C++ class)


      	plaidml::edsl::TensorDim::as_int (C++ function)


      	plaidml::edsl::TensorDim::operator- (C++ function)


      	plaidml::edsl::TensorDim::str (C++ function)


      	plaidml::edsl::TensorDim::TensorDim (C++ function), [1], [2]


      	plaidml::edsl::TensorIndex (C++ class)


      	plaidml::edsl::TensorIndex::operator- (C++ function)


      	plaidml::edsl::TensorIndex::operator< (C++ function), [1]


      	plaidml::edsl::TensorIndex::str (C++ function)


      	plaidml::edsl::TensorIndex::TensorIndex (C++ function), [1], [2]


      	plaidml::edsl::TensorRef (C++ class)


      	plaidml::edsl::TensorRef::operator Tensor (C++ function)


      	plaidml::edsl::TensorRef::operator< (C++ function)


      	plaidml::edsl::TensorRef::operator== (C++ function)


      	plaidml::edsl::TensorRef::tensor (C++ member)


      	plaidml::edsl::TensorRef::TensorRef (C++ function)


      	plaidml::edsl::zero (C++ function)


      	plaidml::exec::Binder (C++ class)


      	plaidml::exec::Binder::Binder (C++ function)


      	plaidml::exec::Binder::compile (C++ function)


      	plaidml::exec::Binder::input (C++ function)


      	plaidml::exec::Binder::output (C++ function)


      	plaidml::exec::Binder::set_device (C++ function)


      	plaidml::exec::Binder::set_input (C++ function)


      	plaidml::exec::Binder::set_output (C++ function)


      	plaidml::exec::Binder::set_target (C++ function)


      	plaidml::exec::Binding (C++ class)


      	plaidml::exec::Binding::buffer (C++ member)


      	plaidml::exec::Binding::tensor (C++ member)


      	plaidml::exec::Executable (C++ class)


      	plaidml::exec::Executable::Executable (C++ function), [1]


      	plaidml::exec::Executable::run (C++ function)


      	plaidml::exec::init (C++ function)


      	plaidml::init (C++ function)


      	plaidml::Settings (C++ class)


      	plaidml::Settings::get (C++ function)


      	plaidml::Settings::set (C++ function)


      	plaidml::TensorShape (C++ class)


      	plaidml::TensorShape::dtype (C++ function)


      	plaidml::TensorShape::nbytes (C++ function)


      	plaidml::TensorShape::ndims (C++ function)


      	plaidml::TensorShape::TensorShape (C++ function), [1], [2], [3]


      	plaidml::View (C++ class)


      	plaidml::View::data (C++ function)


      	plaidml::View::size (C++ function)


      	plaidml::View::writeback (C++ function)


  







          

      

      

    

  
nav.xhtml

    
      Table of Contents


      
        		
          Welcome to plaidml’s documentation!
        


        		
          Installation Instructions
        


        		
          Building from source
          
            		
              Install Anaconda
            


            		
              Install bazelisk
            


            		
              Configure the build
            


            		
              Build the PlaidML Python wheel
            


            		
              Install the PlaidML Python wheel
            


            		
              PlaidML with Keras
            


            		
              Set up a build environment
            


            		
              Build the PlaidML-Keras wheel
            


            		
              Install the PlaidML-Keras Python wheel
            


            		
              Testing PlaidML
            


          


        


        		
          Contributing to PlaidML
          
            		
              Process
            


          


        


        		
          Troubleshooting
          
            		
              Common Issues
              
                		
                  PlaidML Setup Errors
                


                		
                  Memory Errors
                


                		
                  Bazel Issues
                


                		
                  PlaidML Exceptions
                


              


            


            		
              Run Backend Tests
            


            		
              Enable Verbose Logging
            


          


        


        		
          Tile eDSL
          
            		
              Scope and Warning
            


            		
              How to Write Tile Code
              
                		
                  Sum Over Axis
                


                		
                  Max Over Axis
                


                		
                  Matrix Multiply
                


                		
                  Global Min
                


                		
                  Average
                


                		
                  Max Pool 1D
                


                		
                  Valid Indices
                


                		
                  Skipping
                


                		
                  Cumulative Sum
                


                		
                  Convolution
                


                		
                  Dilated 2D Convolution
                


                		
                  Complex Convolution
                


              


            


            		
              Reference
              
                		
                  Contractions
                


                		
                  Elementwise Operations
                


                		
                  Types
                


              


            


          


        


        		
          API
          
            		
              Core
              
                		
                  Initialization
                


                		
                  Objects
                


              


            


            		
              EDSL
              
                		
                  Initialization
                


                		
                  Objects
                


                		
                  Primitives
                


                		
                  Examples
                


              


            


            		
              Execution
              
                		
                  Initialization
                


                		
                  Objects
                


              


            


          


        


        		
          Configuration
        


   